Publications

Multi-Functional Molybdenum Oxide Doping to Improve the Electrical Characteristics of Indium Oxide Thin Film Transistors

Kwan-Jun Heo, Jae-Yun Lee, Gergely Tarsoly and Sung-Jin Kim

Electronic Materials Letters 2025 21 1 9–21. DOI: 10.1007/s13391-024-00522-y

Topics:
ABSTRACT:

This study investigates the utilization of MoO3 precursors to enhance the electrical properties and stability of In2O3 TFTs based on eco-friendly aqueous solutions. Specifically, MoO3 doped In2O3 (Mo-In2O3) TFTs were examined in this research. The Mo cation, hydroxide anion, and oxide radical of the MoO3 precursor provide free electrons to the In2O3 thin film, reducing the trap site between the semiconductor interface, the semiconductor and the insulator, and improving the stability of the device by adjusting the oxygen vacancy. To verify the change in the electrical properties of In2O3 TFT due to MoO3 doping, measurements of electron mobility after 30 days confirmed that In2O3 TFT electron mobility decreased by more than 80%, whereas Mo-In2O3 TFT electron mobility remained stable. PBS and NBS reliability evaluations confirmed that the Vth change of Mo- In2O3 TFT was less than that of In2O3 TFT. (In2O3 TFT PBS: 5.55 V, NBS: 0.33 V, Mo-In2O3 TFT PBS: 4.04 V, NBS: 0.10 V). In order to confirm the interface change of In2O3 film according to MoO3 Doping, the difference in surface roughness was measured using an AFM and found to be within 4%. In addition, the doping effect of the active layer was verified through changes in oxygen species in XPS analysis. To demonstrate its application as an active electronic device, a Mo-In2O3 TFT based resistance load inverter was evaluated, and the voltage transfer curve and excellent inversion characteristics of the inverter were confirmed under various VDD conditions.